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Abstract-This paper summarizes recent results of asymptotic, numerical and experimental inves­
tigations of some nonlinear effects on the mechanics of fracture in homogeneous and bimaterial
sheets of a particular class of hyperelastic incompressible materials. The problem is analysed within
the framework of the finite strain theory of plane stress. Material induced nonlinearities are included
through the use of the generalized neo-Hookean model which is characterized by three parameters
which determine the small strain, "yielding" and "hardening" responses of the component(s). The
structure of the near-tip stress and deformation fields is described and compared to a full-field finite
element investigation. The consequences of the local results on the propagation behavior of a crack
under general in-plane loading are outlined in the special case ofa homogeneous sheet. The analytical
results are corroborated by experimental observations obtained on natural rubber sheets.

1. INTRODUCTION

The complex nature of the singularity characterizing the linear asymptotic stress and strain
fields (Williams, 1959) for a bimaterial interface crack and the associated "undesirable"
phenomena (such as oscillatory stress fields, loss of consistency and crack interpenetration
near the tip, etc,) have, for a long time, constituted a major obstacle to the analysis of
the mechanics of interfacial failures. However, motivated by the increasing number of
engineering applications involving bi-material and multi-material systems, numerous inves­
tigations have been dedicated to the interface fracture problem during the past decade,

This recent "surge of interest" has generated various approaches to cope with the
aforementioned difficulties, The first solution (Comninou, 1977; Aravas and Sharma, 1991)
consists of introducing a frictionless contact zone in the vicinity of the crack tip in order to
resolve the inconsistency associated with the crack face overlapping. In another approach
(Delale and Erdogan, 1988), the interface is given a finite thickness allowing for a smoother
transition in the mechanical properties between those of the two (homogeneous)
components, But the most commonly used method is associated with the concept of "small
scale contact" (Rice, 1988) by which the various inconsistencies relative to the oscillatory
solution are essentially ignored, This approach, which is motivated by the very small size
of the "contact or overlapping zone" in most practical cases, has generated many linearly
elastic investigations of various bimaterial situations [see, for example, the review by
Hutchinson and Suo (1991)].

These studies have demonstrated some specific features of the bimaterial interface
solution; in addition to the contact and overlapping problem already mentioned, the near­
tip fields are characterized by a mode-mixity, the amplitude of which varies radially as the
crack tip is approached. The lack of self-similarity of the local stress and deformation fields
has been shown to have important consequences, for example on the analysis of the
phenomena associated with the kinking of a crack off an interface (He and Hutchinson,
1989; Wang et aI., 1992; Geubelle and Knauss, 1991). Unlike in the homogeneous case,
no fracture criterion can provide a unique prediction of the propagation angle and an
additional length parameter corresponding to the length of the crack extension has to be
introduced to resolve the uniqueness issue. Another feature of the bimaterial problem is the
absence ofa separable HRR-type solution within the framework of small strain deformation
theory of plasticity (Shih, 1991) unless frictionless contact is assumed between the crack
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faces (Aravas and Sharma, 1991), thereby complicating the analysis of the effects of material
related nonlinearities on the crack tip fields.

The objective of the present paper is to summarize a recent analysis of various nonlinear
effects on the structure of the near-tip fields and on the propagation behavior of interface
cracks. The investigation is motivated by previous work by Knowles and Sternberg (1983),
later confirmed in a more general situation by Herrmann (1989), showing that the difficulties
inherent in the small strain elastic and elasto-plastic analyses of the interface crack problem
disappear when the kinematic assumption of infinitesimal deformations is relinquished; a
separable asymptotic solution with real singularities is shown to exist, together with a
smooth opening of the crack faces. The problem studied here concerns that of an interface
crack between two sheets of hyperelastic materials. The present analysis extends the results
of Knowles and Sternberg (1983) by adding material induced nonlinearities through the
use of a more general model (the generalized neo-Hookean model) which captures some
characteristic mechanical responses such as "yielding" and "hardening" behaviors.t

The second section contains some asymptotic results relative to the structure of the
local fields, confirming the existence of a contact-free solution for an arbitrary choice of
material parameters on both sides of the interface. Furthermore, it allows quantification of
the nonlinear effects on the deformation fields by defining a relatively simple nonlinear
mismatch parameter. The effects of the material parameters on the blunting of the crack
are also outlined. The asymptotic results are compared with those of a full-field finite
element analysis.

In addition to its "academic" interest when dealing with the various inconsistencies
associated with the small strain asymptotics of bimaterial problems, the analysis presented
here provides important results relative to the various fracture problems involving the
presence of a non-negligible finite deformation zone near the crack tip. In the third section,
the consequences of the structure of the near-tip fields on the propagation behavior of the
crack is investigated analytically and numerically in the special case of homogeneous
specimens. It is shown that, when a large deformation zone is allowed to develop near the
tip of the crack prior to its propagation, the behavior under general in-plane mixed-mode
conditions is expected to be quite different from the "brittle" (small strain) case. This result
is corroborated by some experimental observations on sheets of natural rubber.

The paper focuses on the main results of the nonlinear analysis of the homogeneous
and bimaterial fracture problem. Due to space constraint, most of the details relative to
the analytical developments and the numerical computations have been left out. They can
however be found in related papers (Geubelle and Knauss, I992a,b,c, 1993).

2. STRUCTURE OF THE NEAR-TIP FIELDS FOR AN INTERFACE CRACK

This section summarizes some of the main results of an asymptotic analysis relative to
the structure of the near-tip stress and deformation fields for a bimaterial interface crack.
Figure I schematically represents the geometry of the generic fracture problem addressed
here; a semi-infinite mathematically sharp crack is located along a straight interface between
two sheets of isotropic, hyperelastic, incompressible materials. The standard axis con­
ventions are adopted, as shown in Fig. I. The analysis is carried out within the nonlinear
finite deformation theory of plane stress, the main relations of which have been described
by Knowles and Sternberg (1983).

The objective of the analysis outlined in the present section is to obtain an approximate
expression, as the crack tip is approached, of the deformed position vector field y defined
by the two-dimensional mapping of the sheet mid-plane II :

y = Y(x) = x+u(x) on II (1H

in which u is the displacement vector and x is the undeformed position vector. Associated

t The terms "yielding" and "hardening" are introduced here in correlation with the corresponding ela­
stoplastic concepts (see Section 2) although the present analysis deals exclusively with hyperelastic components.

t The notations used throughout this paper are similar to those in Geubelle and Knauss (I992a,b,c).
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Fig. I. Geometry of the interface fracture problem.
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with the deformation are various kinematic quantities such as the deformation-gradient field
F = Vy and the scalar invariants 1= tr(FW) and J = det F. Due to the incompressibility of
the material, the in-plane Jacobian J is equal to the inverse of the out-of-plane (or transverse)
stretch A. The stress field can be equivalently expressed in terms of the Cauchy (or true)
stress tensor T or the Piola (or nominal) stress tensor (1 related to the former by

(1=TF-T onn.

The equilibrium equations in absence of body forces are written as

din = 0, T = TT on n* = Y(ll).

(2)

(3)

The materials on both sides of the interface are assumed to behave according to the
generalized neo-Hookean (GNH) model introduced by Knowles (1977) to study the effect
of both geometrical and material nonlinearities on the structure of the near-tip fields in the
homogeneous anti-plane shear case. This model is characterized by three material constants
fl, band n entering the expression of the plane stress elastic potential

(4)

where I and J have been introduced above. As shown in Figs 2(a) and 2(b) which illustrate
the uniaxial stress-strain behavior of this class of materials, each constant corresponds to
a basic characteristic of the material response; the shear modulus fl governs the linear
elastic regime, the "yielding" parameter b determines the amount of linearity while n
corresponds to the "hardening" behavior. Throughout this analysis, only values ofn greater
than 1/2 will be considered, in order to guarantee the ellipticity of the equilibrium equations.
As shown in Fig. 2(a), the mechanical response of the material reaches an asymptote in the
limiting case (n = 1/2), henceforth referred to as the "perfectly plastic" situation. The
relations between the stress components and the deformed coordinates are

(5)

where A = 1+b (I+A2
- 3)/n and Cx!! and bXf3 are the two-dimensional alternator and identity

operator, respectively.
In the remainder of the section, we outline the main steps leading to a near-tip solution

of the fracture problem illustrated in Fig. 1, which is consistent with the various relations
mentioned above, in the particular case where the two sheets have the same "hardening"
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Fig. 2. Uniaxial response of the GNH materials: (a) effect of the "hardening" exponent n; (b) effect
of the "yielding" parameter b.

behavior (i.e. n(l) = n(2) = n).t Then the results of the general situation n(l) =I- n(2) will be
summarized and commented on.

2.1. Interface crack between two GNH sheets ofsame hardening characteristics
We start the local analysis by assuming a separable form of the near-tip deformation

field

t The superscript in parenthesis (k) is the material index, takes the values I (for the top sheet) and 2 (for
the bottom sheet) and is never summed over. It is often omitted for brevity purposes unless required for clarity.
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(6)

where the polar coordinates rand ehave been defined in Fig. 1 and where the exponents
m(k) are required to be real in order to avoid the oscillatory singularity arising in the
linearized local solution. The approximation (6) has to satisfy zero-traction boundary
conditions along the crack faces

and the displacement and traction continuity conditions along the interface

Yil) (r, 0+) = y~2) (r,O-)

oW (r, 0+) = aW (r,O-).

The latter conditions can be shown to lead to

(7)

(8)

(9)

The value of the exponent m can be determined by investigating the leading order of the
integrant entering the definition of the conservation integral.

(10)

where r is any regular contour of outward normal n surrounding the crack tip and crossing
the interface. Substituting the assumed form of the asymptotic field (6) into (10) yields,
with the aid of (4) and (5),

m = 1-1/2n. (11)

Note that, for n > 1/2, m satisfies the inequalities 0 < m < 1, which guarantee finite dis­
placements but singular strains at the crack tip. The angular functions vikl(e) introduced in
(6) are obtained by solving the asymptotic form of the equilibrium equations

which yield

81 2
(n-l) 8x/~,p+IV Y~ = 0 (12)

(13)

where a~k) are four undetermined constants andf(e; n) is representedt in Fig. 3 for various
values of the "hardening" parameter n. The solution (13) satisfies the zero-traction con­
ditions along e= ± TC and the displacement continuity along the interface. The last bound­
ary condition yields an additional relation between the constants a~ll and ai2), such that the
final form of the first term of the near-tip approximation is

y~(r, e) '" a~j(e)f(e;n) r'" (14)

where a~ are two constants left undetermined by the local analysis and j (8) is the angular
step function

t A closed form of f(O, n), first derived by Knowles and Sternberg (1973), can be found in eqn (3.19) of
Geubelle and Knauss (I992a).
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(15)

in which ~ is the nonlinear mismatch parameter, function of the five material constants,

(= [~(~)n-IJl!(2n-ll.- /1(2) b(2l (16)

The nonlinear mismatch parameter provides a very concise way to quantify the effects of
material induced nonlinearities on the strain distribution across the interface. While the
neo-Hookean case (n = 1) suggests a deformation distribution inversely proportional to
the ratio of material stiffnesses, as is the case in the linearized solution, (16) indicates that,
as n decreases, the strains will be more unevenly distributed across the interface and, in
the limiting case of the "perfectly plastic" situation (n -+ 1/2), all the deformations are
concentrated in the weaker component (~ -+ 0 or ~ -+ 00).

The asymptotic solution obtained so far is however not consistent; the value of the in­
plane Jacobian J is identically zero everywhere, leaving the out-of-plane stretch A unde­
termined. An additional term is therefore needed; it is assumed to have a similar separable
form

(17)

where we require the exponents S(k) to be real and greater than m. As was the case before,
matching conditions along () = 0 yield

(18)

The value of s and the expression for the angular functions w~k)(B) are found by solving the
boundary value problem arising from substituting (17) into the asymptotic form (12) of the
equilibrium equations, the traction-free conditions along the crack faces and the continuity
requirements along the interface. Various higher-order terms can be determined in the
process, yielding
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where C, k and d are undetermined constants; F.«p is the two-dimensional alternator and the
exponents p, t and q are functions of the "hardening" parameter n (Fig. 4). The Jacobian
of the in-plane transformation can be shown to behave asymptotically as

J = A-I __ rm +p -
2 j(O)(pjg-m!iJ) (20)

and is illustrated in Fig. 5 for the mismatch parameter ~ = 3. The local solution is thus
characterized by an extreme thinning of the sheet as the crack tip is approached.

A major result of the present local analysis is the confirmation of the existence of an
oscillation-free, contact-free solution, as had been first shown by Knowles and Sternberg
(1983) in the particular case of a neo-Hookean bimaterial sheet (n = 1). The crack faces
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p.(l)I,.P) =1/2

b(l)lb(2) = 1

Fig. 6. Schematic representation of the effect of n on the shape of the deformed crack for 4 values
of n and for /1(2) = 2/1(1), b'l) = b(2).

are found to open smoothly for all loading conditions. Furthermore, relation (20), together
with the description of the shape of the deformed crack

(y (r + n»)p;rn
( +)_ ste 2,_

y, r,_n - C j(±n) , (21)

which is schematically illustrated in Fig. 6, allow us to get a better understanding of the
effect ofn on the crack blunting. As seen in Fig. 5, most of the deformations get concentrated
in the first and fourth quadrants ( - n/2 ~ e~ n/2) and the deformed crack adopts a square­
like shape as the hardening characteristics of the material get weaker. Figure 6 also illustrates
the aforementioned phenomenon of strain concentration in the weaker component, as
quantified by the nonlinear mismatch parameter (. Further discussion of the local approxi­
mation will be given in the next paragraph which summarizes the results of the general
bimaterial situation, allowing for an arbitrary choice of the hardening exponents
(n(l) :f. n(2».

2.2. Near-tip fields in the general bimaterial situation
Although it is somewhat more complex, the solution to the general problemt is very

similar to the reasoning described in the previous section. The final form of the near-tip
deformation fields can be written as

Y= Qy

where Q is a two-dimensional rotation matrix

and yis the "reference" (or "canonical") field

(22)

(23)

t Without loss of generality, we will assume that nil) ;;;, n(2).
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in which a l2 is a "mode-mixity parameter" associated with the first asymptotic term; e, a
and k are constants; the exponents m(k), p and t are presented in Fig. 7 and depend on the
hardening parameters n(k). Various relations can be derived between the undetermined
constants d k

), elk) and k(k) through the continuity conditions along the interface [see Geubelle
and Knauss (1992c) for more details].

Many characteristics of the solution described by (22)-(25) are similar to those
obtained in the special case n(l) = n(2) summarized above; the existence of an oscillation­
free and contact-free solution is confirmed and the effects of the "hardening" parameters
on the crack tip blunting and the strain distribution are also captured. The general situation
presents however two major differences with the simpler case; the mismatch in hardening
exponents across the interface generates new terms in the asymptotic expansion of order

2 (2) (I) l' (I) • •o (r m -m ) lor the top sheet and 0 (r'" ) for the bottom one and the mtensity of the
loading quantified by the value of the "-integral (10) can be shown to affect the ratio of
the first term amplitudes a~k) as

(26)

where ~ is a function of the six material parameters (/Pl, Hkl, n(k)) which reduces to the
expression (16) of the nonlinear mismatch parameter in the case n(l) = n(2). The particular
case of a GNH sheet bonded to a rigid substrate has been discussed in detail in Geubelle
and Knauss (I 992b).

As indicated by (22), the near-tip deformation field y, the rotation depending on the
far-field loading and the material and geometrical characteristics of the bimaterial sheet.
This fact has an important consequence on the propagation behavior of the crack and will
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Fig. 7. Variation of the asymptotic exponents with respect to (nil), n12l) in the general bimaterial
problem: (a) ml"; (b) p; (c) t.
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be examined in greater detail in the next section in the particular case of a homogeneous
sheet of GNH material.

3. NONLINEAR INVESTIGATION OF CRACK PROPAGATION

In the homogeneous situation, the near-tip field (22)-(25) reduces to

y=Qy (27)

where the two-dimensional rotation matrix Q has a form similar to (23) and the reference
deformation field yis the symmetric (mode I) field

{
YI '" crPg (0 ;n)

Y2 ~ arm f(8 ;n) +kr'1(0 ;n) +dr qh (0 ;n)
(28)

in which the exponents m,p, t and q have been shown in Fig. 4 and a, c, k and dare constants
left undetermined by the local analysis. The scalar a can however be related to the far-field
loading through the value of the f -integral as

(29)

The relation between the nonlinear mode-mixity, defined as (NL = 2 tan-1(alZ)!n and
the far-field loading can only be obtained numerically. Following a concept similar to that
of "small scale yielding" [adopted by Shih (1974) in his study of the mixed-mode HRR
fields in the homogeneous case], a boundary layer approacht can be used to determine the
relationship between (NL and its linear counterpart (L = 2 tan- I (K2!K,)!n where K" are the
(linear) stress intensity factors, as illustrated in Fig. 8 for various values of n. This result,
together with (27) and (28), confirms the fact, first recognized by Stephenson (1982) and

t This method consists of numerically solving a full-field nonlinear fracture problem on a circular domain
along the boundary of which conditions corresponding to a (linear) K-field are applied.
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further analysed by Knowles (1981), that a purely antisymmetric (mode II) solution cannot
arise in the framework of finite deformation elastic theory; the crack is due to always open
in the vicinity of its tip.

A comparison of the nonlinear and linear asymptotic solutions also allows definition
of a length scale characteristic of the size of the nonlinear zone. As shown in Fig. 9, the
radial variation of the Cauchy stress tensor norm ahead of the crack shows a sharp transition
between the ,-1/2 singularity of the small strain solution and the stronger ,-1 singularity
associated with the nonlinear analysis. The length parameter 'NL defined by the intersection
of the two asymptotics can be shown to be related to / through

rNL __1_ /
- 3nn 2 p./'

(30)

As mentioned above, the "rotational property" (27) of the near-tip field has a fun­
damental impact on the propagation behavior of the crack; it seems to indicate that the
crack will always tend to propagate in the direction of its original plane regardless of the
far-field loading conditions.t The problem was studied numerically through the finite
element method and the boundary layer approach. The propagation criterion used here is
the maximum energy release rate criterion which suggests that the path [characterized by
the extension length ~/ and the kink angle w measured with respect to the undeformed
crack plane (Fig. 10)] adopted by the crack under general in-plane loading conditions
[characterized by the mode-mixity}' = tan -1(K2/ Ka of the applied "far-field" K-field] is the
path that maximizes the energy release rate G (w, ~l) defined as the variation of the total
potential energy of the fracture specimen for an infinitesimally small crack extension (M ­
0). As was the case in the asymptotic analysis, the material model used in the numerical
investigation is the generalized neo-Hookean one. Figure 10 illustrates the results of the
numerics by presenting the ratio of the "nonlinear" energetically most favorable kink angle
w* normalized by its "linear" counterpart wt (Palaniswamy and Knauss, 1978) as a
function of the crack extension length M [normalized by the size of the finite deformation
zone rNL defined in (30)] for various values of the far-field mode-mixity y. As predicted by
the asymptotics, Fig. 10 shows that, except in the case (y = 0) (mode I loading) for which

t It has to be noted that this property has been shown by Le (1992) to also apply to the plane strain analysis
for a completely different class of (compressible) hyperelastic materials.
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the predicted kink angle is always zero by symmetry, a sharp transition is observed between
the y-dependent linear value wt and the y-independent nonlinear value w* = O.

Most experimental investigations of crack propagation under mixed-mode in-plane
conditions available to date involve brittle situations in which the finite strain effects are
quasi negligible and seem therefore to conform with the small strain results (Palaniswamy
and Knauss, 1978). A recent series of tests (Hodowany-Stone and Montilla, 1993) per­
formed on natural rubber sheets subjected to mixed-mode loading conditions showed a
behavior very different to that observed in previously recorded experiments. As sche­
matically illustrated in Fig. II (a), instead of showing the steep kink angle observed in
brittle specimens, the crack extended first in the direction of its original line (w = 0) then
curved progressively away toward a direction perpendicular to the loading axis. This
behavior was observed for all inclinations of the initial crack with respect to the applied
loading axis (i.e. for all applied mode-mixities), thereby corroborating the asymptotic and
numerical results. A typical fractured specimen is shown in Fig. II (b). Details on the
bimaterial situation can be found in Geubelle and Knauss (1993) where it is shown that,
unlike in the linearized case, a unique prediction of the crack propagation angle is obtained,
which depends on the material combination.

4. CONCLUSIONS

This paper has described some results of an asymptotic and numerical investigation of
the effects of geometry and material induced nonlinearities on the structure of the near-tip
fields in various homogeneous and bimaterial situations for the particular class of gen­
eralized neo-Hookean materials. The main results can be summarized as follows:

(i) The local fields are characterized by multiple real singularities, even in the general
bimaterial situation, which indicates the existence of an oscillation-free and contact-free
solution with a smooth opening of the crack faces.

(ii) The singularities are stronger than in the linearized analysis, especially as the
material(s) present(s) a weak "hardening" behavior.

(iii) The asymptotics of the interface crack problem is characterized by a nonlinear
mismatch parameter which quantifies the distribution of the strains on both sides of the
interface.
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(b) initial crack tip

/

1/4 "

Fig. II. Experimental observations on natural rubber sheets: (a) schematic illustration of typical
small strain (brittle) and large strain behaviors; (b) view of the fracture specimen after crack

propagation.

lOIS

(iv) The near-tip deformation field is shown to correspond to the rotation of a simpler
"reference field", the rotation depending on the far-field loading conditions and the material
properties of the component(s). A boundary layer numerical analysis of the homogeneous
case has yielded a relation between the "far-field" mode-mixity and the rotation parameters,
confirming the impossibility of a pure mode II solution within the nonlinear elastic theory.

(v) Finally, the crack propagation problem has been investigated, showing that a very
different behavior is to be expected when a large deformation zone is allowed to develop
prior to the propagation. The results obtained analytically and numerically have been
corroborated by experimental observations of mixed-mode crack propagation in sheets of
natural rubber.
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